SKEMA RANGKAIAN AMPLIFIER

MELAYANI PERBAIKAN TV DAN PERANGKAT ELEKTRONIK LAINNYA. ALAMAT JL.RAYA KARANG KEMIRI RT 01/RW 06 PURWOKERTO TELP. 082329735432
Showing posts with label saklar. Show all posts
Showing posts with label saklar. Show all posts

Sunday, June 19, 2011

Switching regulator dan Step Down circuit


Switching regulator .
   
Switching regulators work by drawing small amounts of energy from the input source and transferring it step by step to the output. This task is attained by using an electronic switch (operating at a predetermined frequency) which works like a gate between the input energy source and the output. This gate controls the amount of charge that is transferred to the output load. The output voltage of the switching regulator depends on how much time the switch is maintained closed. If the OFF time of switch is long then less energy will be transferred to the output load and so the average output voltage will a be low. If the OFF time of switch is short then more energy will be transferred to the output load which results in a better average output voltage.The schematic of a basic switching regulator is shown below.
Schematic of a simplified switching regulator circuit
When switch S1 is closed capacitor Cout is charged and when switch S1 is open the Cout discharges through the load. The duty cycle of the S1 determines how much energy is transferred to the output load. In simple words the capacitor Cout serves as a filter which converts the pulse waveform from the switch in to a steady voltage. The output voltage will be always a function of the input voltage and the duty cycle of the switch.
Schematic of a practical switching regulator
The schematic of a practical switching regulator is shown above. This circuit has two additional components, a Schottky diode D1 and an inductor L1. These two components are present in almost all switching regulator circuits and they drastically improves the performance of the circuit. Let us see how the diode and inductor improves the performance of the regulator circuit.
When switch S1 is closed the inductor L1 opposes the rising current by creating an opposing electromagnetic field and this makes the diode D1 reverse biased and it behaves like an open switch. When switch S1 is made open the electromagnetic field that was induced in the inductor L1 will be discharging and this creates a current in the reverse polarity. This makes the diode D1 forward biased and it will remain in the conducting stage until the field in the inductor becomes zero. In simple words this action is similar to the charging and discharging of the output capacitor. Thus the combined effect of the inductor and diode improves the filtering capability of the output capacitor and so the circuit efficiency is improved.
uA78S40 based switching regulators.
Here are two switching voltage regulator circuits using uA78S40 IC from On Semiconductors. The first one is a step down converter while the second one is an inverting converter.
uA78S40 is a switching regulator IC that can be used for a variety of applications. The uA78S40 is an integrated switching regulator circuit which has built in circuitries for voltage reference with temperature compensation, oscillator with duty cycle control, high capacity switching element, an independent operational amplifier and independent diode. When voltages excess of 40V or output currents excess of 1.5A are required external switching transistors must be used. The features of uA78S40 include wide temperature range, adjustable output voltage (from 1.5V to 40V), peak output current of 1.5A, 80dB load regulation, 80dB line regulation, wide supply voltage range ( from 2.5V to 40V), very low standby current etc. The applications of this IC include step up converters, step down converters, inverting converters etc. The uA78S40 is available in a 16 pin DIP plastic package.

Step down converter circuit.

    
Step down regulator using uA78S40
The circuit shown above is of a switching step down converter using uA78S40. The input voltage can be 25V DC and the output voltage is 5V @500mA. Ct is the timing capacitor for the internal oscillator while C3 is the input filter capacitor.C3 must be rated above 25V while C2 can be rated anything higher than 10V. The instantaneous output voltage (that is the voltage across output capacitor Cc) is fed back to the inverting input of the internal opamp using the resistor network comprising of R1 and R2. R2 and R1 can be used for setting the output voltage. Using the external rectifier diode D1 improves the overall efficiency of the circuit. If you need to use the internal diode of the IC instead of D1 then omit D1 and restore the track shown dotted.

source  www.circuitstoday.com
Free counters!